
Advances in Real-Time Rendering course, SIGGRAPH 2020

Jean Geffroy Axel Gneiting Yixin Wang

Principal Engine

Programmer

Principal Engine

Programmer

Engine Programmer

RENDERING THE HELLSCAPE OF

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

IDTECH 7

• Fully forward rendered

• Still few uber shaders variations everything

• Larger levels and more complex environments

• More streaming

• Low level API on all platforms

• Still 60FPS on consoles at same resolutions

Advances in Real-Time Rendering course, SIGGRAPH 2020

HYBRID BINNING

• Used Clustered Binning in Doom [Olson12]

• Challenges
• Larger scenes in Doom Eternal

• Distant small lights and decals end up in single big cluster

• Enemies have light rigs

• In fights more dynamic volumes for projectiles and impact decals

• Artists wanted to place more lights and decals

• Wanted to move to GPU culling to reduce CPU load

• New hybrid of cluster and tile binning

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

HYBRID BINNING

• Inspired by “Improved Culling for Tiled and Clustered Rendering”
[Drobot2017]

• Problem: Thousands of lights or decals in some scenes

• Hardware raster tile binning inefficient due to state changes

• Very tight budget (<500us)

Advances in Real-Time Rendering course, SIGGRAPH 2020

COMPUTE SHADER RASTERIZATION

• For simplicity we only bin hexahedra

• Low resolution

• Needs to be conservative
• Many edge cases
• Artists will find them all

• Reverse float depth for precision

• Binned rasterization [Abrash2009]
1. Setup & Cull
2. Coarse raster
3. Fine raster
4. Resolve bitfields to lists

Advances in Real-Time Rendering course, SIGGRAPH 2020

SETUP AND CULL

• Culls hexahedra against near plane

• Emits packed vertices together with side
and edge indices

• Classifies front/back facing for edges and
vertices

• New side at near plane removed

• Computes screen space tile bounds

• Produces work for coarse raster

Advances in Real-Time Rendering course, SIGGRAPH 2020

WORK DISTRIBUTION

• Want to run rasterization thread
for each potentially covered tile
based on rectangular screen
space coverage

• Running [8,8,1] thread groups
for 64 tiles with each thread
looping over the binned
hexahedra for the tile is too slow

• Results in very bad utilization
• Up to 63 idle threads

• Instead emit one thread for each
potentially covered tile

Advances in Real-Time Rendering course, SIGGRAPH 2020

COARSE RASTER

• 256x256 pixels per coarse tile

• Also bins into clusters
• Same depth distribution as in [Sousa2016]

• Already tighter fit than CPU cluster setup

• Produces work for fine raster
• Only emits work for coarse tile that intersect

hexahedra

• One thread for each potentially covered fine
tile

• Each coarse tile has its own work list and
screen space bounds are determined per tile

Advances in Real-Time Rendering course, SIGGRAPH 2020

FINE RASTER

• 32x32 pixels per fine tile

• Rejection based on conservative
min/max depth buffer downsample

• CS computes min/max depth value
for hexahedra per tile

• Refinement step for point lights
culling tile frustum against sphere

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Resolve CS with one thread
group per tile/cluster

• 64 bits checked in one thread
group, one bit per thread

• (maxLights+63)/64 iterations
per tile/cluster

• Uses subgroup ops for
compaction

uint totalLightCount = 0;

for (int i = 0; i < numIterations; ++i) {

const uint lightIndex = (64 * i) + gl_localInvocationID.x;

const uint tileIndex = gl_localInvocationID.y;

bool lightBitSet = fetchBitFromBitfield(tileIndex, lightIndex);

uvec4 subgroupMask = subgroupBallot(lightBitSet);

uint lightCount = subgroupBallotBitCount(subgroupMask);

if (lightBitSet) {

// Computes bitfield prefix sum for all threads < this thread idx

uint listOffset = subgroupBallotExclusiveBitCount(subgroupMask);

listOffset += tileIndex * LIGHTS_PER_TILE;

listBuffer[listOffset + totalLightCount] = lightIndex;

}

totalLightCount += lightCount;

}

if (subgroupElect())

countBuffer[tileIndex] = totalLightCount;

}

RESOLVE BITFIELDS TO LISTS

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Fine tiles are bad if there are
large depth discontinuities

• Each fragment invocation checks
both its cluster and tile and
selects list with fewer entries

• Never worse than clustered

LIGHT LIST SELECTION

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Fine tiles are bad if there are
large depth discontinuities

• Each fragment invocation checks
both its cluster and tile and
selects list with fewer entries

• Never worse than clustered

LIGHT LIST SELECTION

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Fine tiles are bad if there are
large depth discontinuities

• Each fragment invocation checks
both its cluster and tile and
selects list with fewer entries

• Never worse than clustered

LIGHT LIST SELECTION

Advances in Real-Time Rendering course, SIGGRAPH 2020

LIGHT LIST SELECTION

• Fine tiles are bad if there are
large depth discontinuities

• Each fragment invocation checks
both its cluster and tile and
selects list with fewer entries

• Never worse than clustered

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Want to use scalar reads for light
data [Sousa2016]

• Problem: Binning now has much
finer granularity in screen space

• Scalarization based on
cluster/tile index insufficient

HASH SCALARIZATION

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Want to use scalar reads for light
data [Sousa2016]

• Problem: Binning now has much
finer granularity in screen space

• Scalarization based on
cluster/tile index insufficient

HASH SCALARIZATION

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Resolve CS computes hash of
light indices for each list

• Store 24 bits of the hash + 8 bits
num lights per tile/cluster

• Check for uniformity based on
hash value

• Even works if fragment thread
group uses cluster and tile lists

HASH SCALARIZATION

Same color = same hash

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Resolve CS computes hash of
light indices for each list

• Store 24 bits of the hash + 8 bits
num lights per tile/cluster

• Check for uniformity based on
hash value

• Even works if fragment thread
group uses cluster and tile lists

HASH SCALARIZATION

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Long but few threads cause GPU usage to be quite low

• Idle time can be filled with async overlap

• Adding more hexahedra to process almost free

• Idea: Run thousands of gameplay visibility queries through same code

• Changes depth test from “intersects opaque” to “in between camera
and opaque”

• Fine raster tags bit fields read by CPU next frame

USE FOR GAMEPLAY

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Artists wanted small decals
defined by geometry

• Part of authored mesh

• Challenges
• Almost no additional frame budget

• Forward renderer: Can’t blend on
top of G-Buffer

• G-Buffer blending too slow even if
we switched to deferred

GEOMETRY DECALS

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Artists wanted small decals
defined by geometry

• Part of authored mesh

• Challenges
• Almost no additional frame budget

• Forward renderer: Can’t blend on
top of G-Buffer

• G-Buffer blending too slow even if
we switched to deferred

GEOMETRY DECALS

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Projection matrix from mesh UVs

• World space -> texture space

• ℝ2x4 matrix per projection
• 8 floats = 32 bytes

• On disk we store object ->
texture space
• Multiplied with model matrix gives

world -> texture space matrix

• Each instance needs memory for
its geo decals

GEOMETRY DECALS

Advances in Real-Time Rendering course, SIGGRAPH 2020

• Render indices into R8 buffer
• Post depth pass

• Greater/equal depth compare

• Depth bias to avoid z fighting

• Decals need to be coplanar

• ~50us for this pass

• Index per sub mesh projection
list in fragment shader
• List bound to instance descriptor

set

• Arbitrary blending because no
G-Buffer passthrough

GEOMETRY DECALS

Advances in Real-Time Rendering course, SIGGRAPH 2020

GEOMETRY DECALS

Advances in Real-Time Rendering course, SIGGRAPH 2020

GEOMETRY DECALS

Advances in Real-Time Rendering course, SIGGRAPH 2020

GEOMETRY DECALS

Advances in Real-Time Rendering course, SIGGRAPH 2020

LIMITATIONS

• Max 254 projections per sub mesh

• One decal might need multiple
projections

• Can’t do curved geometry very well

• Need projection storage per instance
• Currently 1M decals max per level

• Binned decals always on top

• Animated geometry projections
calculated every frame

Advances in Real-Time Rendering course, SIGGRAPH 2020

GEOMETRY CACHES

• Based on [Gneiting2014]

• Compiled from Alembic caches

• Improved compression
• Predictive Frames
• Hierarchical B-Frames
• Forward and backward motion

prediction
• Oodle Kraken for bitstream

compression

• Instances can share streamed
data blocks if same cache

• Animated colors and UVs

Advances in Real-Time Rendering course, SIGGRAPH 2020

AUTOMATIC SKINNING

• Large data rate reduction for
position stream [Kavan2010]

• Bone matrices quantized and
compressed like other streams

• Only works well with some
meshes
• We still support vertex animation

Advances in Real-Time Rendering course, SIGGRAPH 2020

3 BYTE TANGENT FRAMES

• Tangent frames are computed for each frame and streamed

• Storing two ℝ3 vectors for normal and tangent is expensive

• Idea: Store only normal + rotation for tangent
• Bitangent reconstructed with cross product

• 2 bytes for octahedron normal encoding [Meyer2010]
• Good enough for vertex normals

• 1 byte for rotation

Advances in Real-Time Rendering course, SIGGRAPH 2020

DECODE

• Need deterministic orthonormal vector to
rotate for tangent
• Naïve cross product of normal with e.g.

1, 0, 0 𝑇 causes singularities

• 𝑇𝑏 = ቊ
| −𝑁𝑦, 𝑁𝑥, 0 |𝑇 𝑖𝑓 𝑁𝑥 > 𝑁𝑧

| 0, −𝑁𝑧, 𝑁𝑦 |𝑇 𝑒𝑙𝑠𝑒

• Rodrigues’ Rotation Formula [Euler1770]
gives Tangent
• 𝑇 = 𝑇𝑏 cos 𝛼 + 𝑁 × 𝑇𝑏 sin 𝛼
• Last term cancels out because vectors are

orthonormal

𝑁

𝑇𝑏

𝑇 𝛼

Advances in Real-Time Rendering course, SIGGRAPH 2020

MATERIAL BLENDING

• First step to add detail to the world
• Precedes world decaling pass
• Part of the prop-building process (e.g. grime)
• Can also be environment-specific (e.g. snow)

• Blending of multiple full material stacks

• Mostly vertex painted

• Texture blend weight maps for organic assets and characters
• Required granularity may not match tessellation level

• Blend weights modulated by material heightmaps
• High frequency detail
• Embrace physical features of underlying materials

Advances in Real-Time Rendering course, SIGGRAPH 2020

VERTEX PAINTING

• Built-in painting tool

• 4 materials per asset, 2 materials per triangle

• LOD0 geometry shared by all painted instances

• Lower LODs uniquely generated based on paint job
• Required to mitigate overly noticeable LOD transitions

• Memory overhead manageable thanks to limited paint permutations

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

GPU TRIANGLE CULLING

• Motivation
• 3 times the on-screen triangle count compared to Doom 2016

• Early culling of triangles on the GPU in a compute prepass

• Remove pressure of the HW graphics pipeline

• Backface, frustum & micro-triangle culling
• Similar to "Optimizing the Graphics Pipeline with Compute" [Wihlidal2016]

• Occlusion culling with depth mip chain generated from Umbra's SW buffer

• Runs in addition to all standard CPU culling

• Removes about 70% of submitted triangles in a typical scene
• Budget for 3M visible triangles after CPU culling and LOD selection

• Only about 1M makes it all the way to the rasterizer

Advances in Real-Time Rendering course, SIGGRAPH 2020

GPU GEOMETRY MERGING

• Motivation
• Levels built with large amount of instantiated models, up to 15k in view

• Individual meshes can be low-poly, especially at lower LODs

• Lots of unused VS lanes and Command Processor overhead
• Cascades into poor PS occupancy

• Significant CPU cost to issue draw calls
• Even more considering the use of a depth prepass

• Concept
• Merge surviving triangles of multiple models in a single indirect index buffer

• Combined with GPU triangle culling, guarantees close to 100% useful VS lanes

• Single draw call for many models lowers CPU setup cost

Advances in Real-Time Rendering course, SIGGRAPH 2020

GPU GEOMETRY MERGING -
REQUIREMENTS

• Merged geometry has to use the same pipeline state
• Works great with ubershaders!

• Different materials are fine, only requirement is same PSO

• Relies on completely bindless GPU pipeline

• Globally indexable shader resources
• Vertex data: Allocated from single pool, consistent with geometry streaming

• Textures: Maintain global texture descriptor list as we stream them in/out

• Uniform/Constant buffers: One pool per layout
• Only 3 different indexable layouts in the game: world, characters and geom caches

Advances in Real-Time Rendering course, SIGGRAPH 2020

IMPLEMENTATION - CULLING

• CPU scene traversal generates Geometry Sets
• Up to 256 meshes sharing the same PSO per Geometry Set

• Reserve indirect index buffer space for Geometry Set

• One culling dispatch per Geometry Set

• Culling shader outputs merged indirect index buffer for surviving tris
• Combine VertexID and InstanceID into each 32-bit output index

• Makes it possible to fetch instance data at render time

• Correct behavior when it comes to HW vertex reuse

Advances in Real-Time Rendering course, SIGGRAPH 2020

IMPLEMENTATION - RENDERING

• One indexed indirect draw call per Geometry Set
• Effectively draws 256 meshes at once

• Extract VertexID and InstanceID from packed index value

• InstanceID used to resolve all instance properties
• Base offset within vertex pool

• Buffer fetches instead of vertex attributes

• Instance uniform buffer offset
• Includes material data and texture indices

• Scalarized iteration for divergent texture/buffer fetches
• NonUniformResourceIndex

• “Mergeable” shader variation automatically generated by compiler

Advances in Real-Time Rendering course, SIGGRAPH 2020

IMPLEMENTATION - DETAILS

• CPU code embarrassingly parallel
• Prepare buffers for GPU culling/merging as we’re traversing the scene

• Culling/Merging shader runs async, started before shadows
• Synchronization done per geometry set, so possible culling/draw overlap

• Extra divergent indirection to fetch instance data at render time
• Scary sounding

• Added divergence mostly happens inside the VS or in “cold” code paths.

• Practically imperceptible, largely compensated by other savings

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

RESULTS

• Up to 5ms GPU savings in dense scenes with triangle culling+merging
• Close to no waste in the VS

• Mostly gets rid of the fixed-function bottlenecks

• Similar CPU savings
• Reuse the same indirect index buffer for depth and opaque passes

• Setup done during CPU visibility pass

• Opaque/PreZ draw calls almost completely disappear

Advances in Real-Time Rendering course, SIGGRAPH 2020

GORE SYSTEM

• Separate mesh for each wound
• Authored alongside a clip and blood mask

• Up to 12+ active wounds on 16 active enemies with
multiple base materials
• GPU Merging to the rescue once again!

• Instanced 1 byte/vertex wound buffer
• Bit pack clip and blood weights

• Update when a wound is applied in a CS

• Procedural blood spawning on bullet impact

• Much faster than testing all masks in the VS/PS

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

WATER RENDERING

Advances in Real-Time Rendering course, SIGGRAPH 2020

DISPLACEMENT MAP

Generate displacement map and normal map for water surface according to
Simulating Ocean Water [Tessendorf2001]

Advances in Real-Time Rendering course, SIGGRAPH 2020

GENERATE WATER SURFACE MESH

• Real-Time Water Rendering, Introducing the Projected Grid Concept
[Johanson2004]

• Project a screen-space grid onto the water planes

• Displace grid vertices in world-space

• Render water surfaces by rasterizing grid

Advances in Real-Time Rendering course, SIGGRAPH 2020

GENERATE WATER SURFACE MESH

Render water planes depth image with same resolution as the screenspace grid (256x256)

Scene for reference

Depth image (256x256)

Advances in Real-Time Rendering course, SIGGRAPH 2020

GENERATE WATER SURFACE MESH

Apply displacement map to depth image, output image of grid vertex world positions
(referred to as “vertices image”)

Vertices image (256x256)

Depth image
(256x256)

Displacement map
(256x256)

Advances in Real-Time Rendering course, SIGGRAPH 2020

GENERATE WATER SURFACE MESH

Rasterize screen-space grid mesh using vertices image, output G-buffer containing
depth, normals

Vertices image (256x256) Rasterized screenspace grid (grid is 256x256)

Advances in Real-Time Rendering course, SIGGRAPH 2020

WATER G-BUFFER

Rasterize screen-space grid mesh using vertices image, output G-buffer containing
depth, normals

Scene for reference
G-Buffer (1/2 horizontal resolution)

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

VERTICES IMAGE TAA DISABLED

Advances in Real-Time Rendering course, SIGGRAPH 2020

VERTICES IMAGE TAA ENABLED

Advances in Real-Time Rendering course, SIGGRAPH 2020

WATER SURFACE SSR

Compute water surface SSR to SSR image using depth and normals from G-buffer

Scene for reference
Water SSR (1/2 horizontal resolution)

Advances in Real-Time Rendering course, SIGGRAPH 2020

WATER SURFACE LIGHTING

Compute final water surface lighting

Scene for reference
Water final (1/2 horizontal resolution)

Advances in Real-Time Rendering course, SIGGRAPH 2020

PREPARATION BEFORE RENDERING
TRANSPARENT SURFACES

Split main color buffer into before- and after-water pixels

beforeWater

afterWater

Main color buffer after rendering opaque surfaces

Advances in Real-Time Rendering course, SIGGRAPH 2020

RENDER TRANSPARENT SURFACES

Render transparent surfaces to before- and after-water buffers instead of main color
buffer. Compare fragment depth against water G-buffer depth

beforeWater

afterWater

Render transparent surfaces

Advances in Real-Time Rendering course, SIGGRAPH 2020

RENDER TRANSPARENT SURFACES

Need additional target to track before-water alpha

beforeWater

beforeWaterAlpha

Advances in Real-Time Rendering course, SIGGRAPH 2020

FINAL COMPOSITE

Do final composite, with distorted texcoord lookup [Sousa2008] for after-water image

Final composite

Advances in Real-Time Rendering course, SIGGRAPH 2020

WATER HITS SIMULATION

• Fast Water Simulation for Games Using Height Fields
[Müller-Fischer2008]

• Simulated on grid centered around camera, top-down projection
[Sousa2011]
• Reproject texcoords when fetching previous-frame height field when camera

moves

• Snap grid position to multiple of grid cell size to avoid reprojection aliasing

• One 512x512 simulation grid for all water planes

• Resulting heightfield is added as additional displacement to water
vertices

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

WATER CAUSTICS

• Water caustics image is generated
from the water displacement map

• Rasterize grid mesh aligned to the
displacement map, and perturb
each vertex by simulating refraction
to some constant distance

• Resulting caustics image is used
next frame: it’s projected onto
scene geo that’s underwater or
right above water

float3 refractVertex(pos, normal, lightDir) {
float3 refractDir = refract(lightDir, normal);
return pos + REFRACT_DEPTH * refractDir;

}

out float triangleArea;
out float refractedTriangleArea;
vertex_shader {

// Positions and normals of this grid vertex and its neighbors to the right and above
// Assume these have already been computed from the water displacement map
float3 pos, posRight, posUp;
float3 normal, normalRight, normalUp;

float3 posRefracted = refractVertex(pos, normal, lightDir);
float3 posRightRefracted = refractVertex(posRight, normal, lightDir);
float3 posUpRefracted = refractVertex(posUp, normal, lightDir);

gl_Position = transformToClipSpace(posRefracted);
triangleArea = area(pos, posRight, posUp);
refractedTriangleArea = area(posRefracted, posRightRefracted, posUpRefracted);

}

out float4 fragColor;
fragment_shader {

// Value describes how focused or diffused the lighting is
fragColor = triangleArea / refractedTriangleArea;

}

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

ADDING SUPPORT FOR FLOWING WATER

• Rasterize flowing water surfaces directly to water G-buffer

• Flowing water surface normals are perturbed with normal map and
flow map authored by artists

• No displacement applied to flowing surfaces (this is room for
improvement)

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

Advances in Real-Time Rendering course, SIGGRAPH 2020

SPECIAL THANKS

id Software Evgeny Andreeshchev, Derek Best, Bogdan Coroi, Oliver Fallows, Billy
Khan, Sascha Herfort, Tiago Sousa

AMD Timothy Lottes, David Ziman

NVIDIA Nuno Subtil, Eric Werness

Advances in Real-Time Rendering course, SIGGRAPH 2020

REFERENCES

[Olson2012] “Clustered Deferred and Forward Shading”, Ola Olson et al., HPG 2012

[Sousa2016] “idTech 666 - The Devil is in the Details”, Tiago Sousa et al., Siggraph 2016

[Drobot2017] “Improved Culling for Tiled and Clustered Rendering”, Michal Drobot, Siggraph 2017

[Meyer2010] “On floating-point normal vectors”, Quirin Meyer et al. EGSR’10

[Gneiting2014] “Realtime Geometry Caches”, Axel Gneiting, Siggraph 2014

[Kavan2010] “Fast and Efficient Skinning of Animated Meshes”, Ladislav Kavan et al. CGF 2010

[Euler1770] “Problema algebraicum ob affectiones prorsus singulares memorabile”, Leondar Euler, Opera omnia 1st series 6 (1770):
287-315.

[Wihlidal2016] "Optimizing the Graphics Pipeline with Compute." Graham Wihlidal, GDC 2016

[Tessendorf2001] “Simulating Ocean Water”. Jerry Tessendorf, 2001

[Johanson2004] “Real-Time Water Rendering – Introducing the Projected Grid Concept”. Claes Johanson, Masters Thesis Lund University
2004

[Sousa2008] “Crysis Next Gen Effects”. Tiago Sousa, GDC 2008

[Sousa2011] “CryENGINE 3 Rendering Techniques”. Tiago Sousa, Gamefest 2011

[Müller-Fischer2008] “Fast Water Simulation for Games Using Height Fields”. Matthias Müller-Fischer, GDC 2008

